Technical Report

Panel Study of Income Dynamics PSID Cross-Sectional Individual Weights, 1997-2017

February 2019
Wen Chang, Raphael Nishimura, Steven G. Heeringa, Kate McGonagle, and David Johnson

Survey Research Center, Institute for Social Research
University of Michigan,
Ann Arbor, MI

This technical report documents the methodology and properties for a series of weights that have been developed for cross-sectional analysis of individual data from the 1997-2017 Panel Study of Income Dynamics (PSID). The PSID longitudinal analysis weights for individuals and families are documented in Chang et al. (2019) and Gouskova, et al. (2008). While researchers have always been able to perform cross-sectional analysis using longitudinal weights for PSID sample persons, the new cross-sectional weights offer an additional approach for weighted cross-sectional estimation based on the PSID individual data. Specifically, the PSID cross-sectional weights permit analysts to use all available data for both PSID sample persons and nonsample persons to estimate population characteristics or model population relationships at specific points in time. In addition, the cross-sectional weights are post-stratified to the population characteristics from the Current Population Survey (CPS) or American Community Survey (ACS) for the respective year. This is not the case for the longitudinal weights. PSID plans to provide the cross-sectional weights for each future wave.

This technical report is organized in four sections. Section I defines sample and nonsample persons in the PSID and explains the rationale for creating the cross-sectional weights. The "fair shares" methodology that underlies the construction of the PSID cross-sectional weights is discussed in Section II. Section III describes how the cross-sectional weights are constructed. The report concludes in Section IV with a descriptive analysis of the weights, including comparisons of distributions of U.S. socioeconomic characteristics using weighted estimates from the CPS, ACS and PSID.

I. Introduction

PSID traditionally categorizes persons into one of two groups: sample persons and nonsample persons. The definition of these categories has changed slightly over the years. From 1968 to 1993, a sample person was defined as someone who was either an original sample person; i.e., resident of a PSID sample family in 1968, or an offspring born to or adopted by a sample individual who was actively participating in the study at the time. A newborn child had to appear in the study at the wave immediately following their birth to be considered a sample person. In 1994, the definition of a sample person was expanded to include children born to or adopted by a sample person when the sample person was not participating in the study; i.e., the child need not be residing with a responding panel family at birth or adoption.

In 1997, a baseline sample of post-1968 immigrant families and individuals was added. The same current PSID definition of sample persons (implemented in 1994) applies to the immigrant sample. Throughout the remainder of this memorandum, 1968 will be referenced as the base year for PSID. Readers should note that for 1997/1999 immigrant supplement families the true baseline for sample selection and sample status determination for individuals is 1997.

In 2017, a baseline sample of post-1997 immigrant families and individuals was added to the PSID. This 2017 New Immigrant sample is not covered by this document but detailed information about the post-1997 immigrant sample will be available from the PSID website.

All other members of PSID families are considered nonsample persons. They are typically new spouses and partners or other family members. See McGonagle and Schoeni (2006) for a detailed background on the PSID. Under the conventional methods for computing PSID longitudinal weights for individuals, nonsample persons are automatically assigned a "0" weight and, thus, excluded from any properly weighted longitudinal or cross-sectional analysis of the PSID individual data. The justification for assigning a zero longitudinal weight value to nonsample persons was two-fold. First, barring any biases due to non-response and attrition, the dynamic sampling design for individuals and families employed in the PSID provides unbiased representation of the survey population at each measurement point (cross-sectional) and over time (longitudinal). Second, the process of dynamic recruitment of nonsample persons to PSID families is left-censored. This means that the time at which a nonsample person is first observed in a longitudinal sequence of observations is stochastic—potentially dependent on age and other factors but otherwise random conditional on such covariates. In longitudinal analysis such as modeling simple change over time, repeated measures, growth curves or other more sophisticated models of change over time, analysts typically select the weight for the terminal ("end point") wave of the longitudinal reference period. This ensures that there will be a minimum of missing data for the cases that are included in the longitudinal analysis and that the results of the analysis, when properly weighted, are representative of the population over the time period of interest.

The data loss resulting from excluding nonsample persons was not significant in the early years because these individuals represented a modest fraction of the total persons in the PSID sample of families. For instance, among 17,212 total PSID persons in 1969, 537 were nonsample persons. However, as Table 1 shows, with the passage of time, nonsample individuals have comprised an increasing and now substantial share of the total PSID persons. For example, the number of nonsample persons grew to 7,178 out of 24,821 PSID non-new-immigrant individual respondents in 2017.

Although the PSID panel supports various forms of longitudinal analysis, cross-sectional analysis is a popular usage of the PSID data. In order to increase effective sample size for such analysis, a new set of weights have been developed at the individual level. These new weights are labeled cross-sectional weights to underscore their purpose and to distinguish them from the traditional PSID longitudinal weights. Unlike the longitudinal weights, the cross-sectional weights are non-zero for both sample and nonsample persons. This allows information on sample and nonsample individuals to be included in weighted analyses.

The cross-sectional weights are not provided at the family level. Very few families have a value of zero for their longitudinal weight, hence there is relatively little advantage to creating a cross-sectional family weight. Therefore, it is recommended that the longitudinal family weights be used for cross-sectional analyses of family characteristics and outcomes.

II. "Fair Shares" Methodology for Constructing PSID Cross-sectional Weights

As early as 1984, statisticians working in the U.S. Survey of Income and Program Participation (SIPP) began to study weighting methodologies for including "nonsample" persons who entered a dynamic, longitudinal sample, (Huang, 1984). In 1987, the PSID Board of Overseers expressed interest in a methodology for incorporating the increasing number of nonsample individuals in PSID families into weighted cross-sectional analyses that would represent the general population. Kalton (1987) and Little (1989) developed working papers for the PSID Board that looked specifically at methodology that would enable both PSID sample and nonsample persons to be included in cross-sectional analysis of the panel data. Subsequently, several major panel studies modeled on the PSID and its "dynamic sampling" method have employed the methods discussed in these early papers to develop a cross-sectional weight for

point in time analyses of the panel data. These include the British Household Panel Survey (Lynn, et al., 2006) and the Canadian Survey of Labour and Income Dynamics (Lavallee, 1995). A comprehensive review of the theory and methods for cross-sectional weight development in longitudinal surveys is provided by Kalton and Brick (1995) and Ernst (1989).

Following Kalton and Brick (1995), one method for assigning nonzero weights to all members—both sample and nonsample persons—of a PSID family is labeled the "fair shares" method. Application of the fair shares method assumes that the probability of observing each person in a family is equal to the probability of observing the family itself. This equivalence of family and individual probabilities was true for the original samples of PSID families and individuals first interviewed in the 1968 baseline wave. However, in subsequent waves, probabilities for nonsample persons that were not members of a 1968 sample family were unknown or could not be readily determined.

At any data collection time point, *t*, an initial non-zero cross-sectional weight for each person in a PSID family can be assigned using the fair shares method:

$$\begin{aligned} W_{i,t}^{0} &= \sum_{i=1}^{n_f} \alpha_i \cdot w_{i,t}^* \\ w\,h\,er\,e : \\ n_f &= \text{ the total number of sample and nonsample persons in family f;} \\ w_{i,t}^* &= \text{ the current non-zero individual weight for sample person, i, at wave t.} \\ &= 0 \text{ if person i is nonsample;} \\ \alpha_i &= \text{ (general) an arbitrary influence weight } \in (0,1) \text{ , } \sum_{i=1}^{n_f} \alpha_i = 1 \text{ .} \end{aligned}$$

In general, the values of α_i may be derived to optimize the precision of a specific population estimator (e.g. a population total); however, here we choose an equal person weighting scheme with $\alpha_i = 1/n_f$ and $W_{i,t}^0$ is equivalent to the PSID longitudinal family weight at wave t.

III. Weight construction and evaluation

Using a version of the "fair shares" methodology described in Section II above, cross-sectional weights for all PSID individuals have been constructed for every wave since 1997. For the

waves prior to 1997, data users are advised to use longitudinal weights to conduct cross-sectional analyses, recognizing that for these earlier years the analysis will be based only on PSID sample persons.

The cross-sectional weight used the longitudinal family weight as the starting point, and a two-step adjustment was applied as shown in Figure 1. The base weight was prepared in the first step through trimming and cell-based imputation and redistribution. To do so, the PSID sample of families was stratified into cells cross-classified by the following characteristics:

- SRC/SEO/1997 immigrant sample,
- age of family reference person (<34, 35-54, 55+),
- race of family reference person (Black, Non-Black), and
- region of residence (North East, Midwest, South, West).

Cells with small case counts were combined together. Within the SRC/SEO samples, the most extreme family weight values were trimmed at the 95th percentile of the family weight distribution. The family weights for the 1997 immigrant families were not trimmed. Cell-based imputation is employed for the families with zero family weights. From 2005 to 2017, all PSID families carry a non-zero, positive longitudinal family weight so imputation was not needed since 2005. Next, for each cell, the sum of all weights was restored to its pre-trimmed value, distributing or "smoothing" the "trimmed" share of extreme family weights over families in the same demographic cell. The adjusted family-level weights were assigned to each sample and nonsample person in the family to create the base weight, $W_{i,t(d)}^0$ for person i in cell d.

In the second step, the base weights were post-stratified to known individual population totals for major demographic characteristics. Post-stratification controls were based on the March Current Population Survey (CPS) Annual Social and Economic (ASEC) Supplement for 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, and 2013 waves and were based on the American Community Survey (ACS) one-year Public Use Microdata Sample (PUMS) data for 2015 and 2017 waves. For the 2017 wave, the individuals who were foreign-born and entered the U.S. after 1997 were excluded from ACS data for estimating the population totals used for post-stratification.

The post-strata cells, c, were formed by crossing the following characteristics:

- gender of person (Male, Female),
- age of person (0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70+)
- race of family reference person (Black, Non-Black), and
- region (Northeast, Midwest, South, West).

Some cells were combined to have a minimum number of observations. Table 2 shows the individual sample sizes of these post-strata for every wave since 1997. Similarly, the CPS or ACS sample for the corresponding year was divided into the post-stratification cells defined above. Once the post-stratification cells had been created, the adjustment factor for cell c was calculated as:

$$f_{(c)} = \frac{\sum_{l(c)} W_{l(c)}^{CPS}}{\sum_{i(c)} W_{i,t(c)}^{0}}$$

Where $W_{i,t(c)}^0$ was the base weight from Step 1 for PSID respondent i in cell c, and $W_{l(c)}^{CPS}$ is the person weight of CPS (or ACS for the waves since 2015) for individual l in cell c.

Then the adjustment factor, $f_{(c)}$, is applied to the base weight as follows:

$$W_{\mathbf{i},\mathbf{t}(c)}^{final} = W_{\mathbf{i},\mathbf{t}(c)}^{0} f_{(c)}$$
.

The result, $W_{\mathbf{i},\mathbf{t}(c)}^{\mathit{final}}$, was the final cross-sectional weight.

Table 3 provides a descriptive summary of the sample size, the distributions of the cross-sectional weights, the CPS population totals, and the ACS population totals for each PSID wave. The variable names for the cross-sectional weights in the PSID data archive are listed in Table 4.

IV. Evaluation of the PSID Cross-sectional Weights: Comparisons with the CPS or ACS.

Tables 5 through 8 compare PSID with CPS or ACS weighted estimates of selected demographic statistics, including age, gender, race, and region. All analyses use individuals as the unit of analysis for the results displayed in these tables. In each table, the upper panel reports the estimates using the weighted CPS data, the weighted ACS data, the PSID data weighted by the individual cross-sectional weight, and the PSID data weighted by the individual longitudinal weight. The first and second columns in the lower panel of each table reports the ratio of the weighted estimate for the PSID using the new cross-sectional individual weights to the estimate for the CPS and to the estimate for the ACS, respectively. The statistics in the third and fourth columns in the lower panel of each table are ratios of the estimate for the PSID using the longitudinal individual weights to the estimate for the CPS and to the estimate for the ACS, respectively. Comparing across the ratios of PSID/CPS and PSID/ACS allows one to examine the extent to which population level estimates using the PSID differ when one uses the cross-sectional individual weight instead of the longitudinal individual weight.

Simple examination of the results of these comparisons shows that, as expected, when considering characteristics that are used as post-stratification controls (e.g. gender, race, region) the weighted distributions across categories exactly match the corresponding category totals from CPS (or ACS for the waves since 2015). However, caution is advised in placing too much emphasis on minor differences between the PSID and CPS (or ACS for the waves since 2015) weighted distribution. Take for example, the comparison by age categories in Table 5. As shown in Table 2, the actual post-stratification of the PSID cross-sectional weights for individuals uses age categorized in 10-year decades. The comparison shown in Table 5 uses mid-decade splits (e.g. 45-64, 65+) for estimation and comparison. Note that even though the post-stratification exactly controls the ratio of PSID to CPS (or ACS for the waves since 2015) weighted totals for the 60-69 year age group, there appears to be some difference in the apportionment of 60-64 and 65-69 year olds relative to CPS (or ACS for the waves since 2015).

Analysts should keep in mind that for any given wave before 2017, the post-stratification described above did not explicitly take into account PSID non-coverage of immigrant populations after 1997. Therefore, the cross-sectional weights for 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, and 2015 attempted to numerically account for all individuals in the United States; however, immigrants arriving after 1997, when the immigrant sample was added to the PSID, were not fully represented in the PSID before 2017. The 2017 cross-sectional weights were post-stratified to the population totals that excluded the foreign-born individuals who entered the U.S. after 1997 to match the representation of SRC, SEO and 1997 immigrant samples. The 2017 New Immigrant sample was added to the PSID in 2017 to represent the post-1997 immigrants. The 2017 New Immigrant Supplement sample is not covered in this document, but detailed information about 2017 New Immigrant sample and its weighting methodology will be available from the PSID website.

Finally, another limitation of this post-stratification is that the CPS does not cover the institutionalized population, while PSID, due to the dynamic nature of its sample, may include institutionalized persons. The ACS sample includes the institutionalized individuals thus is more comparable to the PSID sample.

V. References

Chang, W., Nishimura, R., Heeringa, S., McGonagle, K., and Johnson, D. (2019). "Construction and Evaluation of the 2017 Longitudinal Individual and Family Weights", Panel Study of Income Dynamics Technical Report. Survey Research Center, University of Michigan, Ann Arbor. Available at: http://psidonline.isr.umich.edu.

Ernst, L.R. (1989). "Weighting issues for longitudinal household and family estimates." In *Panel Surveys* (Eds. D. Kaspryzk, G. Duncan, G. Kalton and M.P. Singh). New York: John Wiley, 139-159.

Gouskova, E., Heeringa, S., McGonagle, K., and Schoeni, R. (2008). "Panel Study of Income Dynamics Revised Longitudinal Weights 1993-2005". Panel Study of Income Dynamics Technical Report. Survey Research Center, University of Michigan, Ann Arbor. Available at: http://psidonline.isr.umich.edu/data/weights/Long-weights-doc.pdf

Huang, H. (1984). "Obtaining cross-sectional estimates from a longitudinal survey: Experiences of the Income Survey Development Program.", *Proceedings of the Section on Survey Research Methods, American Statistical Association*, 670-675.

Kalton, G. (1987). "Including nonsample persons in PSID analyses". Panel Study of Income Dynamics Working Paper, Ann Arbor: University of Michigan.

Kalton, G. and Brick, J.M. (1995). "Weighting Schemes for Household Panel Surveys", *Survey Methodology*, *Vol 21*, *No. 1*, pp. 33-34, Statistics Canada.

Lavallee, P. (1995). "Cross-sectional weighting of longitudinal surveys of individuals and households using the weight share method. *Survey Methodology*, 21 25-32.

Little, R.J.A. (1989). "Sampling weights in the PSID: Issues and comments. Panel Study of Income Dynamics Working Paper, Ann Arbor: University of Michigan.

Lynn, P., Buck, N. Burton, J., Laurie, H, Uhrig, S.C.N. (2006). *Quality Profile: British Household Panel Survey, Version 2: Waves 1-13:1991-2003. Essex: University of Essx, Institute for Social and Economic Research.*

McGonagle, K. and Schoeni, R. (2006). "The Panel Study of Income Dynamics: Overview and Summary of Scientific Contributions After Nearly 40 Years." Panel Study of Income Dynamics Technical Paper Series. Available at:

http://psidonline.isr.umich.edu/Publications/Papers/tsp/2006-

01_PSID_Overview_and_summary_40_years.pdf

Table 1. PSID Size of Sample and Nonsample Persons and Families: 1997-2017, Excluding 2017 New Immigrant Supplement*

	Tradal Name I am a C	Tradal Name I am a C	Total Number of	Tradal Name I are a C
Year	Total Number of	Total Number of	Nonsample	Total Number of
	Person Records	Sample Persons	Persons	Families
1969	17212	16675	537	4460
1970	17349	16359	990	4645
1971	17590	16244	1346	4840
1972	18051	16283	1768	5060
1973	18236	16155	2081	5285
1974	18396	16068	2328	5517
1975	18623	16028	2595	5725
1976	18768	15937	2831	5862
1977	18998	15898	3100	6007
1978	19140	15833	3307	6154
1979	19443	15892	3551	6373
1980	19747	15916	3831	6533
1981	19796	15897	3899	6620
1982	20112	16008	4104	6742
1983	20327	16010	4317	6852
1984	20393	15987	4406	6918
1985	20680	16024	4656	7032
1986	20437	15782	4655	7018
1987	20486	15755	4731	7061
1988	20506	15692	4814	7114
1989	20451	15564	4887	7114
1990	20745	15626	5119	9371
1991	20770	15607	5163	9363
1992	21145	15752	5393	9829
1993	22311	16121	6190	9977
1994	24512	18153	6359	10764
1995	23929	17699	6230	10401
1996	23810	17587	6223	8511
1997	19761	15047	4714	6747
1999	20515	15313	5202	6997
2001	21400	15639	5761	7406
2003	22290	16005	6285	7822
2005	22918	16614	6304	8002
2007	23501	16906	6595	8289
2009	24385	17471	6914	8690
2011	24661	17643	7018	8907
2013	24952	17785	7167	9063
2015	24637	17505	7132	9048
2017 * DCID 2017 N	24821	17643	7178	9155

^{*} PSID 2017 New Immigrants (post-1997 immigrants) were not included in this table

Table 2. PSID Person Sample Size in Cross-Sectional Weight Post-Stratification Cells: 1997-2017, Excluding 2017 New Immigrant Supplement*

Sex	Race	Region	Age	1997	1999	2001	2003	2005	2007	2009	2011	2013	2015	2017
Female	Black	Mid West	age 1-9	153	143	140	146	156	161	173	188	186	177	171
Male	Black	Mid West	age 1-9	146	150	139	135	157	164	172	181	187	164	179
Female	Black	Mid West	age 10-19	142	155	158	167	173	185	173	171	162	157	158
Male	Black	Mid West	age 10-19	139	150	161	171	171	161	166	162	162	168	168
Female	Black	Mid West	age 20-29	86	96	118	134	161	181	189	201	203	176	179
Male	Black	Mid West	age 20-29	58	64	74	87	128	139	154	152	180	172	167
Female	Black	Mid West	age 30-39	131	119	105	102	106	103	108	134	146	153	179
Male	Black	Mid West	age 30-39	85	72	67	69	66	58	67	71	79	104	122
Female	Black	Mid West	age 40-49	77	104	121	125	141	140	117	107	93	86	93
Male	Black	Mid West	age 40-49	62	75	90	84	72	61	53	59	60	60	69
Female	Black	Mid West	age 50+	75	83	94	119	129	142	168	168	178	204	202
Male	Black	Mid West	age 50+	43	51	59	71	81	91	96	100	101	109	119
Female	Black	North East	age 1-9	43	43	37	51	56	53	65	70	73	77	84
Male	Black	North East	age 1-9	53	54	58	54	51	52	58	50	55	56	59
Female	Black	North East	age 10-19	52	57	60	53	56	54	46	40	44	52	59
Male	Black	North East	age 10-19	69	67	69	75	75	62	61	53	52	47	61
Female	Black	North East	age 20-29	27	29	37	55	63	70	77	67	68	58	61
Male	Black	North East	age 20-29	28	33	38	48	66	70	62	64	68	49	50
Female	Black	North East	age 30-39	59	53	46	37	40	37	45	47	50	56	63
Male	Black	North East	age 30-39	30	28	32	29	26	27	43	44	41	52	60
Female	Black	North East	age 40-49	43	47	53	58	60	47	48	47	41	29	27
Male	Black	North East	age 40-49	28	34	34	41	39	35	38	36	36	28	29
Female	Black	North East	age 50+	45	47	51	55	59	71	83	82	92	94	97
Male	Black	North East	age 50+	20	28	33	34	37	43	52	50	54	55	53
Female	Black	South	age 1-9	511	509	506	504	513	544	561	597	625	589	550
Male	Black	South	age 1-9	539	523	505	499	517	545	565	578	588	612	590
Female	Black	South	age 10-19	500	514	530	558	571	554	547	539	551	549	559
Male	Black	South	age 10-19	517	548	543	585	597	575	559	576	570	557	548
Female	Black	South	age 20-29	363	394	432	466	508	575	598	596	642	643	587
Male	Black	South	age 20-29	278	322	369	404	468	510	548	553	598	579	528
Female	Black	South	age 30-39	466	431	415	388	388	383	429	475	523	564	613
Male	Black	South	age 30-39	293	300	271	278	284	290	325	385	421	446	492
Female	Black	South	age 40-49	329	386	427	478	495	479	435	407	377	365	369
Male	Black	South	age 40-49	266	281	305	328	297	292	272	238	256	245	263
Female	Black	South	age 50-59	94	117	163	223	274	336	383	398	426	455	427
Male	Black	South	age 50-59	78	102	152	201	245	269	265	283	269	258	251
Female	Black	South	age 60-69	81	79	89	76	79	79	107	159	211	248	279
Male	Black	South	age 60-69	47	47	52	54	61	77	103	140	155	193	209
Female	Black	South	age 70+	85	94	96	104	105	107	106	101	101	105	125
Male	Black	South	age 70+	55	55	50	55	56	54	55	53	63	57	69
Female	Black	West	age 1-9	65	59	56	53	59	41	64	59	57	43	50
Male	Black	West	age 1-9	58	58	63	49	44	38	43	56	62	57	53
Female	Black	West	age 10-19	38	44	57	60	57	69	71	67	61	52	49

Sex	Race	Region	Age	1997	1999	2001	2003	2005	2007	2009	2011	2013	2015	2017
Male	Black	West	age 10-19	47	46	54	69	68	62	68	71	56	48	47
Female	Black	West	age 20-29	37	33	31	34	43	42	65	75	86	70	75
Male	Black	West	age 20-29	25	17	26	41	40	56	63	74	73	62	64
Female	Black	West	age 30-39	50	50	52	55	38	37	51	58	60	56	63
Male	Black	West	age 30-39	49	42	28	24	23	23	33	37	46	44	58
Female	Black	West	age 40-49	18	22	28	44	52	54	56	51	44	34	33
Male	Black	West	age 40-49	18	26	40	51	50	47	48	35	28	22	16
Female	Black	West	age 50+	28	32	37	42	48	47	59	67	73	73	82
Male	Black	West	age 50+	16	16	20	26	31	37	58	69	79	75	76
Female	non-Black	Mid West	age 1-9	320	285	292	312	341	337	377	381	381	348	368
Male	non-Black	Mid West	age 1-9	314	325	336	333	341	334	370	384	381	366	367
Female	non-Black	Mid West	age 10-19	338	372	370	340	304	328	316	281	294	316	324
Male	non-Black	Mid West	age 10-19	332	322	313	308	307	313	312	293	290	290	309
Female	non-Black	Mid West	age 20-29	283	303	351	374	394	406	403	396	368	339	338
Male	non-Black	Mid West	age 20-29	273	318	338	346	343	355	346	350	337	300	297
Female	non-Black	Mid West	age 30-39	318	300	304	284	266	277	309	321	337	366	372
Male	non-Black	Mid West	age 30-39	311	293	277	282	303	319	345	345	350	352	333
Female	non-Black	Mid West	age 40-49	307	329	308	309	305	280	276	265	245	231	240
Male	non-Black	Mid West	age 40-49	291	285	312	303	281	270	263	248	246	253	258
Female	non-Black	Mid West	age 50-59	135	169	210	244	264	284	267	248	251	232	209
Male	non-Black	Mid West	age 50-59	158	206	230	237	243	241	233	246	245	218	202
Female	non-Black	Mid West	age 60-69	106	99	94	94	101	123	153	186	203	221	223
Male	non-Black	Mid West	age 60-69	88	85	79	89	107	138	163	178	180	185	189
Female	non-Black	Mid West	age 70+	142	149	151	153	152	143	142	141	148	140	159
Male	non-Black	Mid West	age 70+	97	109	112	106	113	105	109	110	124	114	136
Female	non-Black	North East	age 1-9	212	185	187	172	171	156	158	151	164	136	134
Male	non-Black	North East	age 1-9	198	206	190	177	184	197	171	179	172	149	138
Female	non-Black	North East	age 10-19	188	189	191	206	179	184	170	156	138	132	116
Male	non-Black	North East	age 10-19	187	181	203	198	176	177	178	162	147	142	159
	non-Black	North East	age 20-29	155	149	158	178	197	214	199	190	181	163	162
Male	non-Black	North East	age 20-29	150	153	163	177	183	175	177	189	176	161	142
	non-Black		age 30-39	243	222	210	186	155	151	157	173	173	166	181
	non-Black		age 30-39	206	182	173	178	153	169	164	169	173	158	170
Female	non-Black	North East	age 40-49	187	199	220	224	210	200	190	154	140	119	107
	non-Black		age 40-49	216	224	236	224	197	176	157	136	130	112	108
	non-Black		age 50-59	91	99	115	136	149	161	171	185	176	171	154
		North East	age 50-59	78	94	111	138	166	175	182	185	164	130	128
	non-Black		age 60-69	91	73	67	64	63	77	81	91	106	120	129
		North East	age 60-69	69	58	57	53	54	59	80	86	103	136	137
	non-Black		age 70+	73	91	105	104	104	100	94	102	96	86	89
	non-Black	North East	age 70+	60	68	73	78	77	84	70	69	70	54	64
	non-Black	South	age 1-9	277	277	305	287	306	336	370	373	390	368	368
	non-Black	South	age 1-9	319	314	342	333	331	361	389	406	395	410	391
Female	non-Black	South	age 10-19	273	276	286	294	305	298	313	261	273	322	340
Male	non-Black	South	age 10-19	306	305	306	310	309	315	332	331	322	298	313

Sex	Race	Region	Age	1997	1999	2001	2003	2005	2007	2009	2011	2013	2015	2017
Female	non-Black	South	age 20-29	300	334	363	362	363	376	383	373	349	357	330
Male	non-Black	South	age 20-29	283	289	322	363	360	367	365	344	347	352	337
Female	non-Black	South	age 30-39	341	314	311	321	341	333	383	377	389	373	383
Male	non-Black	South	age 30-39	325	314	322	319	350	350	356	365	374	372	396
Female	non-Black	South	age 40-49	309	313	347	327	307	309	302	286	295	290	294
Male	non-Black	South	age 40-49	281	307	317	312	304	292	313	295	271	280	301
Female	non-Black	South	age 50-59	172	222	241	279	305	294	292	277	264	248	245
Male	non-Black	South	age 50-59	170	200	227	266	264	268	262	248	259	247	234
Female	non-Black	South	age 60-69	114	116	113	124	144	175	208	229	235	247	248
Male	non-Black	South	age 60-69	108	110	116	121	151	166	186	213	226	217	220
Female	non-Black	South	age 70+	149	156	164	167	167	172	179	171	174	172	183
Male	non-Black	South	age 70+	91	107	108	109	112	131	143	141	130	136	163
Female	non-Black	West	age 1-9	272	288	285	296	306	334	355	400	378	353	325
Male	non-Black	West	age 1-9	302	293	289	284	294	317	334	345	359	330	313
Female	non-Black	West	age 10-19	289	328	297	312	314	287	270	282	272	285	298
Male	non-Black	West	age 10-19	272	288	275	316	307	305	308	290	265	269	275
Female	non-Black	West	age 20-29	217	251	295	338	361	357	378	375	357	352	319
Male	non-Black	West	age 20-29	226	266	289	300	311	325	340	342	336	327	334
Female	non-Black	West	age 30-39	268	253	261	254	252	272	286	320	335	338	350
Male	non-Black	West	age 30-39	229	240	220	244	258	277	302	309	323	337	332
Female	non-Black	West	age 40-49	247	275	277	300	279	253	229	230	211	222	223
Male	non-Black	West	age 40-49	245	252	271	269	245	225	214	202	208	196	215
Female	non-Black	West	age 50-59	100	127	161	184	217	242	262	255	259	239	212
Male	non-Black	West	age 50-59	125	150	177	196	224	236	239	232	211	201	165
Female	non-Black	West	age 60-69	75	77	69	73	77	92	114	141	160	183	198
Male	non-Black	West	age 60-69	57	58	69	83	86	108	128	151	164	197	194
Female	non-Black	West	age 70+	93	96	97	111	117	107	115	114	117	128	129
Male	non-Black	West	age 70+	64	68	71	80	88	84	101	92	103	101	117

^{*} PSID 2017 New Immigrants (post-1997 immigrants) were not included in this table

Table 3. Distribution of PSID Cross-Sectional Weights: 1997-2017, Excluding 2017 New Immigrant Supplement*

				CPS	ACS			
			Cr	oss-sectional Wei	ght		March	One Year
							Supplement	PUMS
							Population	Population
Year	Sample Size	Mean	Std Dev	Min	Max	Weighted Total	Total	Total
1997	19,761	13,501	10,121	62	68,079	266,792,421	266,792,407	
1999	20,515	13,246	9,964	32	78,034	271,742,851	271,742,834	
2001	21,400	13,062	10,094	34	76,156	279,517,336	279,517,359	
2003	22,290	12,828	10,099	67	80,408	285,933,473	285,933,409	
2005	22,918	12,705	10,270	69	67,753	291,166,164	291,166,198	Not Used
2007	23,501	12,630	10,293	48	68,214	296,824,059	296,824,002	
2009	24,385	12,363	9,311	118	53,258	301,482,827	301,482,827	
2011	24,661	12,413	10,614	66	88,308	306,109,661	306,109,661	
2013	24,952	12,469	10,851	45	85,742	311,116,170	311,116,170	
2015	24,637	13,046	11,756	60	86,506	321,418,821	316,167,949	321,418,821
2017	24,821	12,186	11,111	39	85,173	302,476,756	320,371,997	302,476,756**

Table 4. Variable Names for PSID Cross-Sectional Weights

Year	Weight Variable Name
1997	ER33438
1999	ER33547
2001	ER33639
2003	ER33742
2005	ER33849
2007	ER33951
2009	ER34046
2011	ER34155
2013	ER34269
2015	ER34414
2017	ER34651

^{*} PSID 2017 New Immigrants (post-1997 immigrants) were not included in this table
** Individuals who were foreign-born and entered the U.S. after 1997 were excluded from the ACS estimates in 2017

Table 5. Comparisons of Age Distributions between CPS, ACS and PSID Cross-Sectional and Longitudinal Individual Weights: 1997-2017, Excluding 2017 New Immigrant Supplement*

	CPS Table of Year by Age AGE AGE					PSID		Year by Cross-Se	ctional V	0	ed with	PSID '			Age***, itudinal								
X 7	<=17	18-29	Age 30-44	45-64	. (5	Year	<=17	18-29	Age 30-44	45-64		V	<=17	18-29	Age 30-44	45-64		V	. 17	18-29	Age 30-44	45-64	>=65
Year 1997	26.70	16.58	24.35	20.42	> =65 11.95	1997	<=1/	18-29	30-44	45-04	>=65	Year 1997	26.86	16.42	24.03	20.18	> =65 12.51	Year 1997	<= 17 27.17	16.50	23.48	20.17	>= 05 12.68
1999	26.50	16.41	23.76	21.40	11.92	1999						1999	26.42	16.50	23.35	21.40	12.33	1999	26.01	16.71	22.69	21.71	12.88
2001	25.87	16.23	23.70	22.68	12.01	2001						2001	25.75	16.35	22.89	22.80	12.33	2001	25.03	16.73	21.98	23.49	12.77
2001	25.64	16.14	22.59	23.65	11.97	2001						2001	25.73	16.59	22.51	23.59	12.12	2003	24.16	17.73	21.37	24.28	12.46
2005	25.34	16.32	21.69	24.56	12.09	2005			Not Used	l		2005	25.20	16.61	21.52	24.75	12.07	2005	23.82	17.73	20.03	25.81	12.50
2007	24.96	16.53	20.88	25.49	12.14	2007			1101 0300			2007	24.65	16.84	20.54	25.84	12.13	2007	23.26	18.14	19.18	26.70	12.72
2009	24.71	16.57	20.10	26.09	12.53	2009						2009	24.37	16.91	19.78	27.07	11.87	2009	22.90	17.87	18.66	27.48	13.09
2011	24.47	16.67	19.62	26.44	12.80	2011						2011	24.21	16.93	19.33	27.00	12.52	2011	22.09	17.25	18.33	27.99	14.35
2013	23.85	16.45	19.46	26.34	13.91	2013						2013	23.71	16.58	19.35	26.66	13.70	2013	21.87	16.78	18.42	27.25	15.69
2015	23.38	16.44	19.31	26.32	14.55	2015	22.88	16.67	19.47	26.13	14.85	2015	22.82	16.73	19.36	26.16	14.93	2015	21.07	16.15	18.33	26.93	17.52
2017	23.11	16.28	19.21	26.02	15.38	2017**	23.47	16.02	17.84	26.29	16.39	2017	23.75	15.73	18.12	25.68	16.71	2017	21.08	15.11	19.14	25.43	19.24
Ratio	PSID wi	ith Cros	Section	al Weigh	nt/CPS	Ratio I	PSID wit	h Cross	Sectional	Weight	/ACS	Rat	io PSID v	with Lon	gitudina	Weight	/CPS	Rati	o PSID v	vith Lon	gitudinal	Weight	/ACS
			Age						Age						Age						Age		
Year	<=17	18-29	30-44	45-64	>=65	Year	<=17	18-29	30-44	45-64	>=65	Year	<=17	18-29	30-44	45-64	>=65	Year	<=17	18-29	30-44	45-64	>=65
1997	1.01	0.99	0.99	0.99	1.05	1997						1997	1.02	1.00	0.96	0.99	1.06	1997					
1999	1.00	1.01	0.98	1.00	1.03	1999						1999	0.98	1.02	0.95	1.01	1.08	1999					
2001	1.00	1.01	0.99	1.01	1.02	2001						2001	0.97	1.03	0.95	1.04	1.06	2001					
2003	0.98	1.03	1.00	1.00	1.01	2003						2003	0.94	1.10	0.95	1.03	1.04	2003					
2005	0.99	1.02	0.99	1.01	1.00	2005			Not Used	ļ		2005	0.94	1.09	0.92	1.05	1.03	2005]	Not Used		
2007	0.99	1.02	0.98	1.01	1.00	2007						2007	0.93	1.10	0.92	1.05	1.05	2007					
2009	0.99	1.02	0.98	1.04	0.95	2009						2009	0.93	1.08	0.93	1.05	1.04	2009					
2011	0.99	1.02	0.99	1.02	0.98	2011						2011	0.90	1.03	0.93	1.06	1.12	2011					
2013	0.99	1.01	0.99	1.01	0.98	2013	1.00	1.00	0.00	1.00	1.01	2013	0.92	1.02	0.95	1.03	1.13	2013	0.02	0.07	0.04	1.02	1.10
2015	0.98	1.02	1.00	0.99	1.03	2015	1.00	1.00	0.99	1.00	1.01	2015	0.90	0.98	0.95	1.02	1.20	2015	0.92	0.97	0.94	1.03	1.18
2017	1.03	0.97	0.94	0.99	1.09	2017	1.01	0.98	1.02	0.98	1.02	2017	0.91	0.93	1.00	0.98	1.25	2017	0.90	0.94	1.07	0.97	1.17

^{*} PSID 2017 New Immigrants (post-1997 immigrants) were not included in this table

** Individuals who were foreign-born and entered the U.S. after 1997 were excluded from the ACS estimates in 2017

^{***} Missing value of age in PSID data was imputed

Table 6. Comparisons of Gender Distributions between CPS, ACS and PSID Cross-Sectional and Longitudinal Weights: 1997-2017, Excluding 2017 New **Immigrant Supplement***

CP	S Table of Yea	ar by Sex	ACS	S Table of Yes	ar by Sex		ole of Year by ID Cross-Secti	Sex, Weighted onal Weight*		ole of Year by Individual Loi	Sex, Weighted
Year	Male	Female	Year	Male	Female	Year	Male	Female	Year	Male	Female
1997	48.97	51.03	1997			1997	48.97	51.03	1997	48.03	51.97
1999	48.86	51.14	1999			1999	48.86	51.14	1999	48.15	51.85
2001	48.86	51.14	2001			2001	48.86	51.14	2001	48.08	51.92
2003	48.92	51.08	2003			2003	48.92	51.08	2003	48.18	51.82
2005	49.03	50.97	2005	No	ot Used	2005	49.03	50.97	2005	48.23	51.77
2007	49.08	50.92	2007			2007	49.08	50.92	2007	48.58	51.42
2009	49.12	50.88	2009			2009	49.12	50.88	2009	48.42	51.58
2011	49.21	50.79	2011			2011	49.21	50.79	2011	48.74	51.26
2013	48.96	51.04	2013			2013	48.96	51.04	2013	48.83	51.17
2015	48.97	51.03	2015	49.20 50.80		2015	49.20	50.80	2015	48.70	51.30
2017	48.99	51.01	2017**	49.28	50.72	2017	49.28	50.72	2017	48.62	51.38
Ratio PSID	with Cross Sect	tional Weight/CPS	Ratio	PSID with Cro Weight/AC		Ratio PSII) with Longitud	inal Weight/CPS	Ratio PSID	with Longitud	inal Weight/ACS
Year	Male	Female	Year	Male	Female	Year	Male	Female	Year	Male	Female
1997	1.00	1.00	1997			1997	0.98	1.02	1997		
1999	1.00	1.00	1999			1999	0.99	1.01	1999		
2001	1.00	1.00	2001			2001	0.98	1.02	2001		
2003	1.00	1.00	2003			2003	0.98	1.01	2003		
2005	1.00	1.00	2005	No	ot Used	2005	0.98	1.02	2005	No	ot Used
2007	1.00	1.00	2007			2007	0.99	1.01	2007		
2009	1.00	1.00	2009			2009	0.99	1.01	2009		
2011	1.00	1.00	2011			2011	0.99	1.01	2011		
2013	1.00	1.00	2013			2013	1.00	1.00	2013		
2015	1.00	1.00	2015	1.00	1.00	2015	0.99	1.01	2015	0.99	1.01
2017	1.01	0.99	2017	1.00	1.00	2017	0.99	1.01	2017	0.99	1.01

^{*} PSID 2017 New Immigrants (post-1997 immigrants) were not included in this table
** Individuals who were foreign-born and entered the U.S. after 1997 were excluded from the ACS estimates in 2017

Table 7. Comparisons of Race Distributions between CPS, ACS and PSID Cross-Sectional and Longitudinal Weights: 1997-2017, Excluding 2017 New **Immigrant Supplement***

CPS T	Cable of Year by Ra	ace****	ACS T	Table of Year by Ra	ace****		Table of Year by R d with PSID Cross Weight*	,	PSID Table of Year by Race***, Weighted with Individual Longitudinal*				
Year	Non-Black	Black	Year	Non-Black	Black	Year	Non-Black	Black	Year	Non-Black	Black		
1997	87.17	12.83	1997			1997	87.17	12.83	1997	86.62	13.38		
1999	87.09	12.91	1999			1999	87.09	12.91	1999	86.73	13.27		
2001	87.26	12.74	2001			2001	87.26	12.74	2001	86.52	13.48		
2003	87.48	12.52	2003			2003	87.48	12.52	2003	86.21	13.79		
2005	87.45	12.55	2005	Not Use	d	2005	87.45	12.55	2005	85.94	14.06		
2007	87.41	12.59	2007			2007	87.41	12.59	2007	85.88	14.12		
2009	86.67	13.33	2009			2009	86.67	13.33	2009	85.18	14.82		
2011	86.43	13.57	2011			2011	86.43	13.57	2011	85.18	14.82		
2013	85.95	14.05	2013			2013	85.95	14.05	2013	84.79	15.21		
2015	85.87	14.13	2015	86.10	13.90	2015	86.10	13.90	2015	84.85	15.15		
2017	85.71	14.29	2017**	85.70	14.30	2017	85.70	14.30	2017	84.42	15.58		
Ratio PSID	PSID with Cross Sectional Weight/CPS Ratio PSID with Cross Sectional Weight/ACS Weight/ACS		ctional	Ratio PSID with Longitudinal Weight/CPS			Ratio PSID with Longitudinal Weight/ACS						
Year	Non-Black	Black	Year	Non-Black	Black	Year	Non-Black	Black	Year	Non-Black	Black		

Ratio PSID	Ratio PSID with Cross Sectional Weight/CPS			Weight/ACS	Cuonai	Ratio PSI	D with Longitudinal	Weight/CPS	Ratio PSID with Longitudinal Weight/ACS			
Year	Non-Black	Black	Year	Non-Black	Black	Year	Non-Black	Black	Year	Non-Black	Black	
1997	1.00	1.00	1997			1997	0.99	1.04	1997			
1999	1.00	1.00	1999			1999	1.00	1.03	1999			
2001	1.00	1.00	2001			2001	0.99	1.06	2001			
2003	1.00	1.00	2003			2003	0.99	1.10	2003			
2005	1.00	1.00	2005	Not Use	d	2005	0.98	1.12	2005	Not Use	d	
2007	1.00	1.00	2007			2007	0.98	1.12	2007			
2009	1.00	1.00	2009			2009	0.98	1.11	2009			
2011	1.00	1.00	2011			2011	0.99	1.09	2011			
2013	1.00	1.00	2013			2013	0.99	1.08	2013			
2015	1.00	0.98	2015	1.00	1.00	2015	0.99	1.07	2015	0.99	1.09	
2017	1.00	1.00	2017	1.00	1.00	2017	0.98	1.09	2017	0.99	1.09	

^{*} PSID 2017 New Immigrants (post-1997 immigrants) were not included in this table
** Individuals who were foreign-born and entered the U.S. after 1997 were excluded from the ACS estimates in 2017

^{***} Individual race in PSID data was approximated using the race of the family reference person. Black was defined based on the race first mention of reference person for PSID estimates. Missing value of race first mention in PSID data was imputed.

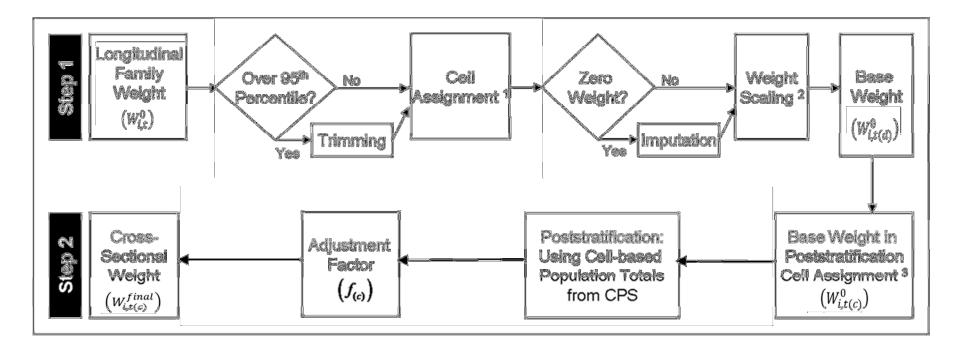

^{****} Black was defined by black alone or in combination with one or more other races for CPS or ACS estimates

Table 8. Comparisons of Region Distributions between CPS, ACS and PSID Cross-Sectional and Longitudinal Weights: 1997-2017, Excluding 2017 New Immigrant Supplement*

	CPS Table of Year by Region ACS Table of Year by Region							PSID T			ion, Weight nal Weight	ted with		PSID Table of Year by Region, Weighted with Individual Longitudinal Weight					
Year	NE	MW	South	West	Year	NE	MW	South	West	Year	NE	MW	South	West	Year	NE	MW	South	West
1997	19.32	23.27	34.98	22.43	1997					1997	19.32	23.27	34.98	22.43	1997	20.14	27.66	31.23	20.97
1999	19.09	23.29	34.92	22.70	1999					1999	19.09	23.29	34.92	22.70	1999	19.12	27.51	31.75	21.62
2001	18.98	22.76	35.57	22.69	2001					2001	18.98	22.76	35.57	22.69	2001	19.30	27.49	31.69	21.52
2003	18.93	22.59	35.60	22.88	2003					2003	18.93	22.59	35.60	22.88	2003	18.86	26.93	31.96	22.26
2005	18.55	22.28	36.09	23.09	2005		Not	Used		2005	18.55	22.28	36.09	23.09	2005	18.02	27.27	32.68	22.02
2007	18.24	22.06	36.40	23.30	2007					2007	18.24	22.06	36.40	23.30	2007	18.26	26.63	32.88	22.23
2009	17.97	21.78	36.77	23.48	2009					2009	17.97	21.78	36.77	23.48	2009	17.41	26.28	33.24	23.07
2011	17.90	21.59	37.00	23.50	2011					2011	17.90	21.60	37.00	23.50	2011	17.44	26.01	33.40	23.16
2013	17.72	21.35	37.33	23.60	2013					2013	17.72	21.35	37.33	23.60	2013	17.37	25.97	33.38	23.28
2015	17.64	21.27	37.43	23.67	2015	17.51	21.13	37.70	23.66	2015	17.51	21.13	37.70	23.66	2015	16.88	26.01	33.60	23.51
2017	17.34	20.92	37.87	23.87	2017**	17.02	21.59	38.06	23.33	2017	17.02	21.59	38.06	23.33	2017	16.43	26.22	33.93	23.42
Ratio l	PSID with	Cross Sec	tional Weig	ht/CPS	Ratio P	SID with	Cross Sect	ional Weig	ht/ACS	Ratio	PSID wit	h Longitud	linal Weigh	t/CPS	Ratio	PSID wit	h Longitud	linal Weigh	t/ACS
Year	NE	MW	South	West	Year	NE	MW	South	West	Year	NE	MW	South	West	Year	NE	MW	South	West
1997	1.00	1.00	1.00	1.00	1997					1997	1.04	1.19	0.89	0.93	1997				
1999	1.00	1.00	1.00	1.00	1999					1999	1.00	1.18	0.91	0.95	1999				
2001	1.00	1.00	1.00	1.00	2001					2001	1.02	1.21	0.89	0.95	2001				
2003	1.00	1.00	1.00	1.00	2003					2003	1.00	1.19	0.90	0.97	2003				
2005	1.00	1.00	1.00	1.00	2005		Not	Used		2005	0.97	1.22	0.91	0.95	2005		Not	Used	
2007	1.00	1.00	1.00	1.00	2007					2007	1.00	1.21	0.90	0.95	2007				
2009	1.00	1.00	1.00	1.00	2009					2009	0.97	1.21	0.90	0.98	2009				
2011	1.00	1.00	1.00	1.00	2011					2011	0.97	1.20	0.90	0.99	2011				
2013	1.00	1.00	1.00	1.00	2013					2013	0.98	1.22	0.89	0.99	2013				
2015	0.99	0.99	1.01	1.00	2015	1.00	1.00	1.00	1.00	2015	0.96	1.22	0.90	0.99	2015	0.96	1.23	0.89	0.99
2017	0.98	1.03	1.01	0.98	2017	1.00	1.00	1.00	1.00	2017	0.95	1.25	0.90	0.98	2017	0.97	1.21	0.89	1.00

^{*} PSID 2017 New Immigrants (post-1997 immigrants) were not included in this table
** Individuals who were foreign-born and entered the U.S. after 1997 were excluded from the ACS estimates in 2017

Figure 1. Construction of PSID Cross-Sectional Individual Weights: 1997-2017

- 1. PSID sample type, age and race of family reference person and region were crossed to form the cells.
- 2. Weights were rescaled to match the sum of the trimmed and imputed weights in each cell to the sum of original weights within the corresponding cell.
- 3. Age and gender of persons, race of family reference person and region were crossed to form the cells.